Some special types of determinants in graded skew PBW extensions

Abstract

En este artículo, demostramos que el automorfismo de Nakayama de una extensión PBW torcida graduada sobre un álgebra de Koszul finitamente presentada y Auslander-regular tiene determinante homológico trivial. Para A = σ(R)<x1, x2> una extensión PBW torcida graduada sobre un álgebra conexa R, calculamos su P-determinante y el inverso de σ. En el caso particular de extensiones PBW torcidas cuasi-conmutativas sobre álgebras de Koszul Artin-Schelter regulares, mostramos explícitamente la relación entre el automorfismo de Nakayama del anillo de coeficientes y la extensión. Finalmente, damos condiciones para garantizar que A sea Calabi-Yau. Proporcionamos ejemplos ilustrativos de la teoría con álgebras de interés en geometría algebraica no conmutativa y geometría diferencial no conmutativa.

Publication
Revista Integración, 39(1), 91-107. doi:10.18273/revint.v39n1-2021007

Related