Matrix Uvarov Transformation on the Unit Circle: Asymptotic Properties

Abstract

Let 𝜎 be an 𝑙×𝑙 Hermitian matrix measure supported on the unit circle. In this contribution, we study some algebraic and analytic properties of matrix orthogonal polynomials associated with the Uvarov matrix transformation of 𝜎 defined by dπœŽπ‘’π‘š(𝑧)=d𝜎(𝑧)+βˆ‘π‘—=1π‘šπŒπ‘—π›Ώ(π‘§βˆ’πœπ‘—), where πŒπ‘— is an 𝑙×𝑙 positive definite matrix, πœπ‘—βˆˆβ„‚ with πœπ‘—β‰ πœπ‘– and 𝛿 is the Dirac matrix measure.

Publication
Bulletin of the Malaysian Mathematical Sciences Society, 44, 279-315. doi:10.1007/s40840-020-00947-2

Related