On a Christoffel Transformation for Matrix Measures Supported on the Unit Circle

Abstract

Let 𝜎 be a Hermitian matrix measure supported on the unit circle. In this contribution, we study some algebraic and analytic properties of the orthogonal matrix polynomials associated with the Christoffel matrix transformation of 𝜎 defined by π‘‘πœŽπ‘π‘š(𝑧)=π‘Šπ‘š(𝑧)π»π‘‘πœŽ(𝑧)π‘Šπ‘š(𝑧), where π‘Šπ‘š(𝑧)=βˆπ‘šπ‘—=1(π‘§πˆβˆ’π΄π‘—) and 𝐴𝑗 is a square matrix for 𝑗=1,…,π‘š. Moreover, we study the relative asymptotics of the associated orthogonal matrix polynomials when πœŽπ‘π‘š satisfies a matrix condition in the diagonal case. Some illustrative examples are considered.

Publication
Computational Methods and Function Theory, 21, 219–243. doi:10.1007/s40315-020-00324-x

Related