Quantitative statistical stability for equilibrium states of piecewise partially hyperbolic maps

Abstract

We consider a class of endomorphisms that contains a set of piecewise partially hyperbolic dynamics semi-conjugated to non-uniformly expanding maps. Our goal is to study a class of endomorphisms that preserve a foliation that is almost everywhere uniformly contracted, with possible discontinuity sets parallel to the contracting direction. We apply the spectral gap property and the ζ-Hölder regularity of the disintegration of its equilibrium states to prove a quantitative statistical stability statement. More precisely, under deterministic perturbations of the system of size δ, we show that the F-invariant measure varies continuously with respect to a suitable anisotropic norm. Furthermore, we establish that certain interesting classes of perturbations exhibit a modulus of continuity estimated by D2δζlogδ, where D2 is a constant.

Publication
Discrete and Continuous Dynamical Systems. doi:10.3934/dcds.2023129

Related