Let ๎ผ๐พ(๐๐ธ;๐น) (resp. ๎ผ๐ค(๐๐ธ;๐น)) denote the subspace of all ๐โ๎ผ(๐๐ธ;๐น) which are compact (resp. weakly continuous on bounded sets). We show that if ๎ผ๐พ(๐๐ธ;๐น) contains an isomorphic copy of ๐0, then ๎ผ๐พ(๐๐ธ;๐น) is not complemented in ๎ผ(๐๐ธ;๐น). Likewise we show that if ๎ผ๐ค(๐๐ธ;๐น) contains an isomorphic copy of ๐0, then ๎ผ๐ค(๐๐ธ;๐น) is not complemented in ๎ผ(๐๐ธ;๐น).
Dedicated to the memory of Jorge Mujica (1946โ2017)