En este trabajo se presenta una forma alternativa para calcular integrales definidas por medio de métodos aleatorios. En este caso, es necesario utilizar elementos del conocimiento estadístico-probabilístico para generar números pseudoaleatorios provenientes de una distribución de probabilidad uniforme en el intervalo (0,1), los cuales como datos numéricos superarán ciertas pruebas estadísticas y serán considerados números aleatorios apropiados para realizar procesos de simulación. Luego, se usa el concepto de muestra aleatoria y la ley fuerte de los grandes números para desarrollar un algoritmo y evaluar integrales definidas de forma aproximada usando el método de Monte Carlo. Finalmente, se obtienen resultados para dos casos específicos de integrales definidas en el sentido de Riemann. Se concluye que los procedimientos desarrollados conforman una metodología y una estrategia didáctica que podrían ser utilizadas para introducir la enseñanza de procesos de simulación a nivel del bachillerato o del pregrado, la cual también puede servir para ilustrar usos concretos de la integración numérica en situaciones donde no es posible encontrar soluciones analíticas.